A Kernel Gabor-Based Weighted Region Covariance Matrix for Face Recognition
نویسندگان
چکیده
منابع مشابه
A Kernel Gabor-Based Weighted Region Covariance Matrix for Face Recognition
This paper proposes a novel image region descriptor for face recognition, named kernel Gabor-based weighted region covariance matrix (KGWRCM). As different parts are different effectual in characterizing and recognizing faces, we construct a weighting matrix by computing the similarity of each pixel within a face sample to emphasize features. We then incorporate the weighting matrices into a re...
متن کاملGabor-Kernel Fisher Analysis for Face Recognition
Kernel based methods have been of wide concern in the field of machine learning. This paper proposes a novel Gabor-Kernel Fisher analysis method (G-EKFM) for face recognition, which applies Enhanced Kernel Fisher Model (EKFM) on Gaborfaces derived from Gabor wavelet representation of face images. We show that the EKFM outperforms the Generalized Kernel Fisher Analysis (GKFD) model. The performa...
متن کاملHuman Face Recognition using Gabor based Kernel Entropy Component Analysis
In this paper, we present a novel Gabor wavelet based Kernel Entropy Component Analysis (KECA) method by integrating the Gabor wavelet transformation (GWT) of facial images with the KECA method for enhanced face recognition performance. Firstly, from the Gabor wavelet transformed images the most important discriminative desirable facial features characterized by spatial frequency, spatial local...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملMonogenic Scale Space Based Region Covariance Matrix Descriptor for Face Recognition
In this paper, we have presented a new face recognition algorithm based on region covariance matrix (RCM) descriptor computed in monogenic scale space. In the proposed model, energy information obtained using monogenic filter is used to represent a pixel at different scales to form region covariance matrix descriptor for each face image during training phase. An eigenvalue based distance measur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2012
ISSN: 1424-8220
DOI: 10.3390/s120607410